数据文件储存
数据文件存储形式可以是多种多样的,比如可以保存成 TXT 纯文本形式,也可以保存为 Json 格式、CSV 格式等,本节我们来了解下文本文件的存储方式。
TXT文本存储
将数据保存到 TXT 文本的操作非常简单,而且 TXT 文本几乎兼容任何平台,但是有个缺点就是不利于检索,所以如果对检索和数据结构要求不高,追求方便第一的话,可以采用 TXT 文本存储,本节我们来看下利用 Python 保存 TXT 文本文件的方法。
本节目标
本节我们要保存知乎发现页面的热门问题部分,将其问题和答案统一保存成文本形式。
基本实例
首先可以用 Requests 将网页源代码获取下来,然后使用 PyQuery 解析库进行解析,接下来将提取的标题、回答者、回答保存到文本,代码如下:
import requests from pyquery import PyQuery as pq url = 'https://www.zhihu.com/explore' headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36' } html = requests.get(url, headers=headers).text doc = pq(html) items = doc('.explore-tab .feed-item').items() for item in items: question = item.find('h2').text() author = item.find('.author-link-line').text() answer = pq(item.find('.content').html()).text() file = open('explore.txt', 'a', encoding='utf-8') file.write('\n'.join([question, author, answer])) file.write('\n' + '=' * 50 + '\n') file.close()
在这里主要是为了演示文件保存的方式,因此 Requests 异常处理部分在此省去,我们首先用 Requests 提取了知乎发现页面,然后将热门问题的问题、回答者、答案全文提取出来,然后利用了Python提供的 open() 方法打开一个文本文件,获取一个文件操作对象,这里赋值为 file,然后利用 file 对象的 write() 方法将提取的内容写入文件,最后记得调用一下 close() 方法将其关闭,这样抓取的内容即可成功写入到文本中了。
运行程序,可以发现在本地生成了一个 explore.txt 文件,这样热门问答的内容就被保存文文本形式了。
在这里 open() 方法的第一个参数即为要保存的目标文件名称,第二个参数为 a,代表以追加方式写入到文本,另外我们还指定了文件的编码为utf-8,最后写入完成之后,我们还需要调用 close() 方法来关闭文件对象。
打开方式
在刚才的实例中,第二个参数我们设置成了 a,这样在每次写入文本时不会清空源文件,而是在文件末尾写入新的内容,这是一种文件打开方式。关于文件打开方式,其实还有另外的几种,在此列举如下:
r 以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。
rb 以二进制格式打开一个文件用于只读。文件指针将会放在文件的开头。这是默认模式。
r+ 打开一个文件用于读写。文件指针将会放在文件的开头。
rb+ 以二进制格式打开一个文件用于读写。文件指针将会放在文件的开头。
w 打开一个文件只用于写入。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
wb 以二进制格式打开一个文件只用于写入。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
w+ 打开一个文件用于读写。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
wb+ 以二进制格式打开一个文件用于读写。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
a 打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。
ab 以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。
a+ 打开一个文件用于读写。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,创建新文件用于读写。
ab+ 以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。如果该文件不存在,创建新文件用于读写。简化写法
另外文件写入还有一种简写方法,那就是使用 with as 语法,在 with 控制块结束时,文件会自动关闭,所以就不需要再调用 close() 方法了。
所以上面的保存方式我们可以简写如下:
with open('explore.txt', 'a', encoding='utf-8') as file: file.write('\n'.join([question, author, answer])) file.write('\n' + '=' * 50 + '\n')
如果想保存时将原文清空,那么可以将第二个参数改写为 w,代码如下:
with open('explore.txt', 'w', encoding='utf-8') as file: file.write('\n'.join([question, author, answer])) file.write('\n' + '=' * 50 + '\n')
如果数据结构为[{},{}…]这种格式的就需要将文本转换一下,再写出
for row in student_list_info: for txt in row.values(): rstr += str(txt) + '\t' rstr += '\n' with open('students_txt.txt', 'a+', encoding='utf8') as f: f.write(rstr)
Json文件存储
Json,全称为 JavaScript Object Notation, 也就是 JavaScript 对象标记,通过对象和数组的组合来表示数据,构造简洁但是结构化程度非常高,它是一种轻量级的数据交换格式,本节我们来了解一下利用 Python 保存数据到 Json 文件的方法。
对象和数组
在 JavaScript 语言中,一切都是对象。因此,任何支持的类型都可以通过 Json 来表示,例如字符串、数字、对象、数组等。但是对象和数组是比较特殊且常用的两种类型。
- 对象
对象在 JavaScript 中是使用花括号 {} 包裹起来的内容,数据结构为 {key1:value1, key2:value2, …} 的键值对结构。在面向对象的语言中,key 为对象的属性,value 为对应的值。键名可以使用整数和字符串来表示。值的类型可以是任意类型。 数组
数组在 JavaScript 中是方括号 [] 包裹起来的内容,数据结构为 [“java”, “javascript”, “vb”, …] 的索引结构。在 JavaScript 中,数组是一种比较特殊的数据类型,它也可以像对象那样使用键值对,但还是索引使用得多。同样,值的类型可以是任意类型。所以一个 Json 对象可以写为如下形式:
[{ "name": "Bob", "gender": "male", "birthday": "1992-10-18" }, { "name": "Selina", "gender": "female", "birthday": "1995-10-18" }]
由中括号包围的就相当于列表类型,列表的每个元素可以是任意类型,在示例中它是字典类型,由大括号包围。
Json 可以由以上两种形式自由组合而成,可以无限次嵌套,结构清晰,是数据交换的极佳方式。
- 对象
读取Json
Python 为我们提供了简单易用的 json 库来供我们实现 Json 文件的读写操作,我们可以调用 json 库的 loads() 方法将 Json 文本字符串转为 Json 对象,可以通过 dumps()方法将 Json 对象转为文本字符串。
例如在这里有一段 Json 形式的字符串,它是 str 类型,我们用 Python 将可其转换为可操作的数据结构,如列表或字典。
import json str = ''' [{ "name": "Bob", "gender": "male", "birthday": "1992-10-18" }, { "name": "Selina", "gender": "female", "birthday": "1995-10-18" }] ''' print(type(str)) data = json.loads(str) print(data) print(type(data))
运行结果:
<class 'str'> [{'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18'}, {'name': 'Selina', 'gender': 'female', 'birthday': '1995-10-18'}] <class 'list'>
在这里我们使用了 loads() 方法将字符串转为 Json 对象,由于最外层是中括号,所以最终的类型是列表类型。
这样一来我们就可以用索引来取到对应的内容了,例如我们想取第一个元素里的 name 属性,就可以使用如下方式获取:
data[0]['name'] data[0].get('name')
得到的结果都是:
Bob
通过中括号加 0 索引我们可以拿到第一个字典元素,然后再调用其键名即可得到相应的键值。在获取键值的时候有两种方式,一种是中括号加键名,另一种是 get() 方法传入键名。推荐使用 get() 方法来获取内容,这样如果键名不存在的话不会报错,会返回None。另外 get() 方法还可以传入第二个参数即默认值,我们用一个示例感受一下:
data[0].get('age') data[0].get('age', 25)
运行结果:
None
在这里我们尝试获取年龄 age,其实在原字典中是不存在该键名的,如果不存在,默认会返回 None,如果传入第二个参数即默认值,那么在不存在的情况下则返回该默认值。
值得注意的是 Json 的数据需要用双引号来包围,不能使用单引号。例如若使用如下形式表示则会出现错误:
import json str = ''' [{ 'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18' }] ''' data = json.loads(str)
运行结果:
json.decoder.JSONDecodeError: Expecting property name enclosed in double quotes: line 3 column 5 (char 8)
在这里会出现 Json 解析错误的提示,是因为在这里数据用了单括号来包围,请千万注意 Json 字符串的表示需要用双引号,否则 loads() 方法会解析失败。
如果我们是从 Json 文本中读取内容,例如在这里有一个data.json 文本文件,其内容是刚才我们所定义的 Json 字符串。
我们可以先将文本文件内容读出,然后再利用 loads() 方法转化。
import json with open('data.json', 'r') as file: str = file.read() data = json.loads(str) print(data)
运行结果:
[{'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18'}, {'name': 'Selina', 'gender': 'female', 'birthday': '1995-10-18'}]
以上是读取 Json 文件的方法。
输出Json
另外我们还可以调用 dumps() 方法来将 Json 对象转化为字符串。
例如我们将刚上例中的列表重新写入到文本。
import json data = [{ 'name': 'Bob', 'gender': 'male', 'birthday': '1992-10-18' }] with open('data.json', 'w') as file: file.write(json.dumps(data))
利用 dumps() 方法我们可以将 Json 对象转为字符串,然后再调用文件的 write() 方法即可写入到文本
另外如果我们想保存 Json 的格式,可以再加一个参数 indent,代表缩进字符个数。
with open(‘data.json’, ‘w’) as file:
file.write(json.dumps(data, indent=2))
这样得到的内容会自动带有缩进,格式会更加清晰。
另外如果 Json 中包含中文字符,例如我们将之前的 Json 的部分值改为中文,再用之前的方法写入到文本。
import json data = [{ 'name': '王伟', 'gender': '男', 'birthday': '1992-10-18' }] with open('data.json', 'w') as file: file.write(json.dumps(data, indent=2))
为了输出中文,我们还需要指定一个参数 ensure_ascii 为 False,另外规定文件输出的编码。
with open('data.json', 'w', encoding='utf-8') as file: file.write(json.dumps(data, indent=2, ensure_ascii=False))
这样我们就可以输出 Json 为中文了,所以如果字典中带有中文的内容我们需要设置 ensure_ascii 参数为 False 才可正常写入中文。
CSV文件存储
CSV,全称叫做 Comma-Separated Values,中文可以叫做逗号分隔值或字符分隔值,其文件以纯文本形式存储表格数据。该文件是一个字符序列,可以由任意数目的记录组成,记录间以某种换行符分隔,每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的是逗号或制表符,不过所有记录都有完全相同的字段序列,相当于一个结构化表的纯文本形式,它相比 Excel 文件更加简介,XLS 文本是电子表格,它包含了文本、数值、公式和格式等内容,而 CSV 中不包含这些内容,就是特定字符分隔的纯文本,结构简单清晰,所以有时候我们用 CSV 来保存数据是比较方便的,本节我们来讲解下 Python 读取和写入 CSV 文件的过程。
写入
在这里我们先看一个最简单的例子:
import csv with open('data.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['id', 'name', 'age']) writer.writerow(['10001', 'Mike', 20])
首先打开了一个 data.csv 文件,然后指定了打开的模式为 w,即写入,获得文件句柄,随后调用 csv 库的 writer() 方法初始化一个写入对象,传入该句柄,然后调用 writerow() 方法传入每行的数据即可完成写入。
运行结束后会生成一个名为 data.csv 的文件,数据就成功写入了,直接文本形式打开的话内容如下:
id,name,age 10001,Mike,20 10002,Bob,22 10003,Jordan,21
可以看到写入的文本默认是以逗号分隔的,调用一次 writerow() 方法即可写入一行数据
实际执行结果:每隔一行都有一个空行,改写成如下形式则没有空行了:
with open(‘data.csv’, ‘w’,newline=’’) as csvfile:
如果我们想修改列与列之间的分隔符可以传入 delimiter 参数,代码如下:
import csv
with open(‘data.csv’, ‘w’) as csvfile:writer = csv.writer(csvfile, delimiter=' ') writer.writerow(['id', 'name', 'age']) writer.writerow(['10001', 'Mike', 20])
例如这里在初始化写入对象的时候传入 delimiter 为空格,这样输出的结果的每一列就是以空格分隔的了,内容如下:
id name age Mike 20 Bob 22 Jordan 21
实际效果:每行的数据都写在第一列了
另外我们也可以调用 writerows() 方法同时写入多行,此时参数就需要为二维列表,例如:
import csv with open('data.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['id', 'name', 'age']) writer.writerows([['10001', 'Mike', 20], ['10002', 'Bob', 22], ['10003', 'Jordan', 21]])
输出效果是相同的,内容如下:
id,name,age 10001,Mike,20 10002,Bob,22 10003,Jordan,21
但是一般情况下爬虫爬取的都是结构化数据,我们一般会用字典来表示,在 csv 库中也提供了字典的写入方式,实例如下:
import csv with open('data.csv', 'w') as csvfile: fieldnames = ['id', 'name', 'age'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow({'id': '10001', 'name': 'Mike', 'age': 20}) writer.writerow({'id': '10002', 'name': 'Bob', 'age': 22}) writer.writerow({'id': '10003', 'name': 'Jordan', 'age': 21})
在这里我们先定义了三个字段,用 fieldnames 表示,然后传给 DictWriter 初始化一个字典写入对象,然后可以先调用 writeheader() 方法先写入头信息,然后再调用 writerow() 方法传入相应字典即可,最终写入的结果是完全相同的,内容如下:
id,name,age 10001,Mike,20 10002,Bob,22 10003,Jordan,21
这样我们就可以完成字典到 CSV 文件的写入了。
另外如果我们想追加写入的话可以修改文件的打开模式,如将 open() 函数的第二个参数改成 a 就可以变成追加写入,代码如下:import csv with open('data.csv', 'a') as csvfile: fieldnames = ['id', 'name', 'age'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerow({'id': '10004', 'name': 'Durant', 'age': 22})
这样在上面的基础上再执行这段代码,文件内容便会变成:
id,name,age 10001,Mike,20 10002,Bob,22 10003,Jordan,21 10004,Durant,22
可见数据被追加写入到了文件中。
如果我们要写入中文内容的话可能会遇到字符编码的问题,此时我们需要给 open() 参数指定一个编码格式,比如这里再写入一行包含中文的数据,代码需要改写如下:import csv with open('data.csv', 'a', encoding='utf-8') as csvfile: fieldnames = ['id', 'name', 'age'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerow({'id': '10005', 'name': '王伟', 'age': 22})
在这里需要给 open() 函数指定编码,否则可能会发生编码错误。
注意:
1.指定编码的话,使用文本文档打开csv文件,中文可以显示,但是使用表格打开csv文件中文会乱码
2.不指定编码的话,使用文本文档打开csv文件,中文显示乱码,但是使用表格打开csv文件中文会显示
以上便是 CSV 文件的写入方法。
另外 如果我们接触过 Pandas 等库的话,可以调用 DataFrame 对象的 to_csv() 方法也可以非常方便地将数据写入到 CSV 文件中。
读取
我们同样可以使用 csv 库来读取 CSV 文件,例如我们现在将刚才写入的文件内容读取出来,代码如下:
import csv with open('data.csv', 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: print(row)
运行结果:
['id', 'name', 'age'] ['10001', 'Mike', '20'] ['10002', 'Bob', '22'] ['10003', 'Jordan', '21'] ['10004', 'Durant', '22'] ['10005', '王伟', '22']
在这里我们构造的是 Reader 对象,通过遍历输出了每行的内容,每一行都是一个列表形式,注意在这里如果 CSV 文件中包含中文的话需要指定文件编码。
另外如果我们接触过 Pandas 的话,可以利用 read_csv() 方法将数据从 CSV 中读取出来,例如:
import pandas as pd df = pd.read_csv('data.csv') print(df)
运行结果:
id name age 10001 Mike 20 10002 Bob 22 10003 Jordan 21 10004 Durant 22 10005 王伟 22
参考链接